ARTÍCULO EN AVANCE ON LINE

Compressive behaviour of steel-fibre reinforced concrete in Annex L of new Eurocode 2
Gonzalo Ruiz, Ángel de la Rosa, Elisa Poveda, Riccardo Zanon, Markus Schäfer, & Sébastian Wolf.
DOI: https://doi.org/10.33586/hya.2022.3092

Para ser publicado en: Hormigón y Acero
Por favor, el presente artículo debe ser citado así:

Este es un archivo PDF de un artículo que ha sido objeto de mejoras propuestas por tres revisores después de la aceptación, como la adición de esta página de portada y metadatos, y el formato para su legibilidad, pero todavía no es la versión definitiva del artículo. Esta versión será sometida a un trabajo editorial adicional, y una revisión más antes de ser publicado en su formato final, pero presentamos esta versión para adelantar su disponibilidad.
En el proceso editorial y de producción posterior pueden producirse pequeñas modificaciones en su contenido.

© 2022 Publicado por CINTER Divulgación Técnica para la Asociación Española de Ingeniería Estructural, ACHE
Compressive behaviour of steel-fibre reinforced concrete in Annex L of new Eurocode 2

Comportamiento en compresión del hormigón reforzado con fibras de acero según el Anejo L del nuevo Eurocódigo 2

Gonzalo Ruiz(1,∗), Ángel De La Rosa (1), Elisa Poveda (1), Riccardo Zanon (2), Markus Schäfer (2) & Sébastien Wolf(3)

(1) ETS de Ingenieros de Caminos, C. y P., Universidad de Castilla-La Mancha
Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain

(2) Department of Engineering, University of Luxembourg,
6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

(3) ArcelorMittal Fibres, Route de Finsterthal,
L-7769 Bissen, Luxembourg

(∗) Correspondence: Gonzalo.Ruiz@uclm.es

December 8, 2022

Abstract

This paper describes the model for the compressive stress-strain behaviour of steel-fibre reinforced concrete (SFRC) in Annex L of the new Eurocode 2 (CEN, Eurocode 2: Design of concrete structures. Part 1-1: General rules – Rules for buildings, bridges and civil structures, prEN 1992-1-1: 2022; EC2 in short), developed within CEN TC250/SC2/WG1/TG2 – Fiber reinforced concrete. The model uses functions obtained from correlations with an extensive database comprised of 197 well-documented SFRC compressive tests and 484 flexural tests. We detailedly explain the model and derive
the strain values for the parabola-rectangle model for ULS of SFRC in Annex L. In addition, we also use the model and the correlations with the database to provide a link between the compressive and the flexural performance classes in EC2, which allows a complete definition of any particular SFRC. Likewise, we derive parabola-rectangle strain values for each flexural performance class, which is mainly advantageous for the stronger flexural performance classes. Finally, we give an example showing the enhancement in strength and ductility of a composite steel-SFRC section endorsed with the new model, which results of 15% and 100%, respectively.

Este artículo describe la nueva ley tensión-deformación en compresión para hormigón reforzado con fibras de acero (HRFA) que propone el Anejo L del nuevo Eurocódigo 2 (CEN, Eurocódigo 2: Diseño de estructuras de hormigón. Parte 1-1: Reglas generales – Reglas para edificios, puentes y estructuras civiles, prEN 1992-1-1: 2022; en breve, EC2), desarrollado dentro del grupo de trabajo CEN TC250/SC2/WG1/TG2 – Hormigón reforzado con fibras. La nueva ley utiliza funciones obtenidas a través de correlaciones con una extensa base de datos compuesta por ensayos de HRFA bien documentados, 197 a compresión y 484 a flexión. En el artículo explicamos detalladamente la nueva ley, y deducimos los nuevos valores de deformación para la ley parábola-rectángulo en ELU para HRFA en el Anejo L. Además, también usamos la nueva ley y las correlaciones con la base de datos para vincular las clases de compresión y flexión del EC2, lo cual permite una definición completa de cualquier HRFA. Del mismo modo, deducimos nuevos valores de deformación para la ley parábola-rectángulo en ELU para cada clase de flexión, que añaden ductilidad a las clases de flexión más resistentes. Finalmente, incluimos un ejemplo que muestra la mejora en resistencia y ductilidad de una sección mixta de acero-HRFA calculada con la nueva ley, que resulta ser un 15% más resistente y un 100% más dúctil que la misma sección con hormigón sin fibras de la misma clase de compresión.

Key words: Compressive model for SFRC in Annex L of Eurocode 2; Combined compression/flexural classification for any SFRC; Relevant strains for ULS calculation; Impact of the ductility and toughness enhancement of composite steel-SFRC sections on Eurocode 4.

Palabras clave: Ley tensión-deformación en compresión para HRFA en el Anejo L del Eurocódigo 2; Clasificación combinada compresión/flexión para cualquier HRFA; Deformaciones relevantes para el cálculo de ELU; Repercusión en la mejora de la ductilidad y tenacidad de secciones mixtas acero-HRFA en el Eurocódigo 4.
1 Introduction

The superior ductility and toughness provided by steel-fibre reinforcement to flexural elements are well known, mainly due to the higher residual flexural tensile strength after cracking [1–6]. This is achieved because steel fibres give the capacity to the concrete to overtake tension, and this capacity is increased in correlation with the fibres’ type, the steel wire tensile strength, and the dosage rate of steel fibres in the concrete mix. This enables the use of steel-fibre reinforced concrete (SFRC) in many structural applications [1, 3, 7–9], mainly when controlling the cracking processes is a must [1, 10], like in tunnel lining segments [1, 11–20], industrial floors [1, 21, 22], elevated slabs, bearing rafts on ground, and on piles [23, 24], precast pipes [25] and others. This is why SFRC is included in several structural concrete design codes and regulations [26–35], although they only consider the response to tension and its influence on bending.

It is also known that increasing the compression strength of the concrete involves an increase in the flexural strength, and in turn, the addition of steel fibres increases the capacity of deformation and ductility when the maximum flexural load is exceeded [36]. There is much research that analyzes the flexural behaviour of SFRC in terms of tension, deformation and crack mouth opening displacement using relationships that take into account the characteristics associated with the reinforcement of the fibre [1, 2, 6, 37–47], principally the dosage rate, slenderness, and steel wire tensile strength.

On the other hand, the ductility and toughness increase after the maximum load of SFRC in compression has been thoroughly reported [48–64], and there are several compressive stress-strain models developed so far [50, 52, 54, 57, 58, 64–69]. Regrettably, most of them were calibrated with limited data, and their predictions failed when checked against other experimental sources, as pointed out by Bencardino et al. [70]. However, they reported that the model of Barros et al. [57] is very accurate. Indeed, it gave good results when used by Yoo et al. [36] to model the flexural and compressive strengths of concrete reinforced with amorphous steel fibres.

Disregarding the effective contribution of the fibres in compression when designing structural elements may lead to a waste of the capabilities of the material. For instance, additional ductility and toughness in compression may facilitate that steel elements in composite sections can work at their limits [71, 72]. Besides, as flexural and compressive behaviours of SFRC are interconnected, it follows that proper classification of SFRC requires establishing a link between the compression and flexural strength classes, which is not done in the current normative [26, 27].

All the above considered, Task Group CEN TC250/SC2/WG1/TG2, responsible for the new Annex L on SFRC, decided to study the compressive capacities of the material and draft a model that could account for them in a technological fash-
The outcome is the model in the draft of Annex L of the new Eurocode 2 [73] (EC2 in short). It is based on functions obtained from correlations with an extensive database comprised of 197 well-documented SFRC compressive tests and 484 flexural tests [1, 56, 57, 61, 62, 70, 74–88]. Detailed derivations of these functions are reported in [89–91].

The following section succinctly describes the stress-strain model as it appears in Annex L of EC2 [73]. For the sake of consistency, along with brevity in the description, the new model is based on the $\sigma_c-\epsilon_c$ equation for plain concrete proposed by Sargin [92] and implemented in Formula 5.6 of Section 5.1.6 (3) of EC2 [73]. The new model just changes the expressions for some of the coefficients in Formula 5.6 to account for the increased toughness and ductility of SFRC due to fibres. Subsequently, we comprehensively explain the model in a closed form and justify the strain values given for ULS calculations (Section 3). In Section 4 we provide a discussion based on the link between compressive and flexural classification (Sub-section 4.1), the ductility in compression including the strain values defining the new expressions for each flexural performance class (4.2), and the impact of SFRC ductility on composite beams designed in accordance to Eurocode 4 [93] (4.3). Finally, we draw some conclusions in Section 5.

2 Compressive behaviour of SFRC in Annex L

2.1 Stress-strain relationship in compression for non-linear structural analysis of SFRC

The stress-strain relation for non-linear structural analysis of SFRC in Annex L of the new EC2 (version of November 10, 2022) [73], section L.5.5.2 (2), reads as follows:

"The relation between σ_c and ϵ_c in compression in Formula (5.6) may be used to model the response of SFRC to short-term uniaxial compression provided the following modifications in the parameters are made:

$$\epsilon_{c1}(%) = 0.7 f_{cm}^{1/3} (1 + 0.03 f_{R,1k})$$

and, for $\epsilon_{c1} < \epsilon_c \leq \epsilon_{cu1}$:

$$k = 1 + \frac{20}{\sqrt{82 - 2.2 f_{R,1k}}} \quad \text{and} \quad \epsilon_{cu1} = k \epsilon_{c1}$$

where f_{cm} and $f_{R,1k}$ must be inserted in MPa in Eqs. 1 and 2."
2.2 Stress distribution for SFRC in compression in ULS

Annex L also allows accounting for the superior toughness and ductility of SFRC in ULS —as compared to plain concrete— by enlarging the strain parameters that define the stress distribution. This is done in section L.8.1 (4), which reads as follows:

“The stress distribution according to Formula (8.4) may be modified for SFRC by applying $\epsilon_{c2} = 0.0025$ and $\epsilon_{cu} = 0.006$.”

These parameters are 0.0020 and 0.0035, respectively, for concrete without fibres.

3 Explanation and justification of the compressive stress-strain model for SFRC in Annex L

3.1 Stress-strain relationship in compression

The new σ_c-ϵ_c relationship for SFRC is built on the compressive model for plain concrete proposed by Sargin [92] and implemented in EC2 [73], Formula 5.6, that is:

$$\frac{\sigma_c}{f_{cm}} = \frac{k \eta - \eta^2}{1 + (k - 2) \eta}$$ \hspace{1cm} (3)

where f_{cm} is the mean compressive strength (given in Table 5.1 of EC2 [73]); k is a parameter enforcing that the secant elastic modulus of the curve is E_{cm}, and is given by:

$$k = 1.05 \epsilon_{c1} \frac{E_{cm}}{f_{cm}}$$ \hspace{1cm} (4)

where ϵ_{c1} is the compressive strain corresponding to the concrete strength, i.e. the peak of the curve, and is obtained as:

$$\epsilon_{c1}[\%] = 0.7 f_{cm}^{1/3} \leq 2.8 \%$$ \hspace{1cm} (5)

Equation 5 needs that f_{cm} is in MPa. Note that k in Eq. 4 is non-dimensional whatever the system of units is used, but it would need that E_{cm} is in GPa and f_{cm} in MPa in case ϵ_{c1} is given in per mill as per Eq. 5.

Variable η of Eq. 3 is the ratio between the compressive strain, ϵ_c, and the compressive strain at the peak, ϵ_{c1}:

$$\eta = \frac{\epsilon_c}{\epsilon_{c1}}$$ \hspace{1cm} (6)

where ϵ_{c} has the following limit value:

$$\epsilon_{c} < \epsilon_{cu1}[\%] = 2.8 + 14 (1 - f_{cm}/108)^4 \leq 3.5 \%$$ \hspace{1cm} (7)
which requires that \(f_{cm} \) is in MPa. Having the above definitions into account, Eq. 3 describes a non-dimensional stress-strain curve whose abscissa and ordinate are \(\eta \) and \(\sigma_c/f_{cm} \), respectively. The dimensional stress-strain curve for plain concrete given by Eq. 3 is shown in Fig. 1.

![Stress-strain relation for plain concrete in compression](image)

Figure 1: Stress-strain relation for plain concrete in compression (Fig. 5.1, EC2 [73]).

The new stress-strain relation for SFRC uses Eq. 3 but modifies the values of some of the parameters to account for the additional toughness and ductility provided by the steel fibres. The SFRC model keeps the values for \(f_{cm} \) and \(E_{cm} \) of the base concrete since it is proven that fibres have little influence on them [89–91]. However, the strain for the peak of the curve, \(\epsilon_{c1} \), is increased as expressed in Eq. 1. The unit increase of the strain for the maximum stress is 0.03\(f_{R,1k} \) (\(f_{R,1k} \) in MPa), as disclosed in [91]. The rest of the curve parameters in Eq. 3 remain the same for the ramp-up part of the stress-strain curve, that is for \(\epsilon_c \leq \epsilon_{c1} \) (or \(\eta \leq 1 \)).

The downward stretch of the curve after \(\epsilon_{c1} \) can also be represented using Eq. 3 provided a new value for the parameter \(k \) is taken, as expressed in Eq. 2. Note that with this new value for \(k \) the stress-strain curve has a maximum at \(\epsilon_c = \epsilon_{c1} \) (\(\eta = 1 \)), and intercepts the abscissa at \(\epsilon_c = \epsilon_{cu1} \), where \(\epsilon_{cu1} = k \epsilon_{c1} (\eta_u = k) \). So, the new value for \(k \) in Eq. 2 represents the increase in the critical strain relative to \(\epsilon_{c1} \) [89, 91].

It bears emphasis that parameter \(k \) takes the following values for the two stretches—ascending and descending branches—of the stress-strain curve:

\[
k = \begin{cases}
1.05 \frac{\epsilon_{c1} E_{cm}}{f_{cm}} & \text{for } \epsilon_c \leq \epsilon_{c1} \\
1 + \frac{20}{\sqrt{82 - 2.2 f_{R,1k}}} (f_{R,1k} \text{ in MPa}) & \text{for } \epsilon_{c1} < \epsilon_c \leq \epsilon_{cu1}
\end{cases}
\]

(8)
The new stress-strain curve for SFRC is plotted in Fig. 2. Note that Fig. 2 includes the equations and variables to be applied for building the complete compressive stress-strain model for SFRC.

The database we used for the multivariate analysis and subsequent model derivation contains results of SFRC with hooked-end fibres only. Thus, the equations derived in papers [89–91] are valid for this type of SFRC. However, the compressive σ-ϵ curve in Annex L is a function of $f_{R,1k}$ only (see Eqs. 1 and 2), which is a parameter that depends mainly on the compressive strength of the base concrete and the interface properties of the fibre [90], and very little on the hooks at the ends or the shape of the fibre. Therefore, the new compressive model can be used for SFRC reinforced with any type of steel fibre.

Previous versions of this stress-strain curve did not use Eq. 3 for the descending stretch, but an inverted parabola with the maximum in the peak of the compressive strength [89–91], which expression is:

$$\frac{\sigma_c}{f_{cm}} = 1 - \frac{1}{4} (\eta - 1)^2 \left(1 - \frac{\sigma_R}{f_{cm}} \right)$$

(9)

where σ_R was called the residual compressive strength and is the value that the stress takes for $\eta = 3$. It was defined so because there was not a single stress-strain curve in the database that did not reach at least a final strain three times larger.
than the strain at the peak, which served to define a reference point to obtain the energy per unit volume absorbed in the database tests, which were called W_1 from 0 to ϵ_{c1}, and W_2 from ϵ_{c1} to 3 ϵ_{c1}. Besides, it seemed reasonable to define a residual compressive strength since it was analogous to the residual flexural strengths, $f_{R,b}$, which are accepted as relevant SFRC parameters defining the tensile behaviour. The intercept of Eq. 9 with the η-axis is η_u ($= k$), and can be written as a function of σ_R as:

$$\eta_u = 1 + \frac{2}{\sqrt{1 - \sigma_R/f_{cm}}}$$

(10)

Likewise, Eq. 9 expressed as a function of η_u is:

$$\frac{\sigma_c}{f_{cm}} = 1 - \left(\frac{\eta - 1}{\eta_u - 1} \right)^2$$

(11)

Discussions within TG2 led to looking for an expression for the descending branch that allowed a very short description of the $\sigma_c-\epsilon_c$ model, with few or no new variables involved. This is why we opted for using Eq. 3 also for the second stretch of the new model since the curve is very similar to the parabola given by Eqs. 9 and 11. Eq. 3 has a maximum at $\eta = 1$ and intercepts the η-axis at $\eta = k$, and so it was only necessary to change the meaning of k after the peak, taking it as η_u (Eq. 10). Besides, detailed derivations using the response-surface methodology—a multivariate regression tool—applied to the database disclosed
that σ_R depends mainly on the characteristic residual flexural strength for a crack-mouth opening displacement of 0.5 mm, $f_{R,1k}$, the expression for it being:

$$\frac{\sigma_R}{f_{cm}} = 0.1839 + 0.02203 f_{R,1k}$$

where $f_{R,1k}$ must be introduced in MPa (Eq. 16 in [91]). Such derivation was made by fitting the energy absorbed by the tests in the database between ϵ_{c1} and $3 \epsilon_{c1}$, W_{c2}, which is related to the residual compressive strength as:

$$\frac{\sigma_R}{f_{cm}} = \frac{3W_{c2}}{2f_{cm}\epsilon_{c1}} - 2$$

Inserting Eq. 12 in Eq. 10 yields:

$$\eta_u = 1 + \frac{20}{\sqrt{82 - 2.2 f_{R,1k}}}$$

which is the value that should be used for k in the descending stretch of the compressive stress-strain model given by Eq. 3.

3.2 Stress distribution in ULS

For the design of cross sections in ULS, EC2 section 8.1.2 (1) [73] proposes using a parabola-rectangle stress distribution (see Fig. 4c), defined as:

$$\sigma_{cd} = \begin{cases} f_{cd} \left[1 - (1 - \epsilon_c/\epsilon_{c2})^2 \right] & \text{for } 0 \leq \epsilon_c \leq \epsilon_{c2} \\ f_{cd} & \text{for } \epsilon_{c2} \leq \epsilon_c \leq \epsilon_{cu} \end{cases}$$

where ϵ_{c2} and ϵ_{cu} are 0.0020 and 0.0035, respectively, for concrete without fibres. Alternatively, a rectangular stress block distribution as given in Fig. 4d may be assumed, as stated in section 8.1.2 (2).

Annex L accounts for the enhancement of toughness and ductility in compression provided by the fibre by increasing the strains defining the stress distribution, ϵ_{c2} and ϵ_{cu}, to 0.0025 and 0.0060, respectively.

These new values for ϵ_{c2} and ϵ_{cu} for SFRC are based on the observed behaviour of the SFRCs in the database. In particular, the energy consumption up to ϵ_{c2} increases 45% in average compared to the corresponding base concrete (see Table 1). As fibres have little effect on the compressive strength, the toughness increase up to the peak of the parabola, and subsequently the new strain that corresponds with the peak, can be obtained by multiplying the strain for the peak stress of the base concrete —without fibres— times W_{f1}° ($= W_{f1}/W_{c1}$, see Table 1):

$$\epsilon_{f2} = \epsilon_{c2} W_{f1}^\circ$$
where ϵ_{f2} is the strain for the peak of the parabola for the concrete with fibres (we use subscript ‘f’ instead of ‘c’ to specify that we refer to concrete reinforced with steel fibres). The result is 0.0029, rounded down to 0.0025, which is finally taken as ϵ_{c2} for ULS calculations in SFRC.

Regarding the value for ϵ_{cu} with fibres, it is figured out by enforcing that the rectangular part consumes the same energy as the post-peak stretch of the new stress-strain curve (Eq. 9) up to $3\epsilon_{f2}$. The energy consumed in this stretch is, on average, 2.83W_{c1}, which is 183% more energy than consumed up to the peak by the corresponding base concrete, Table 1. For the parabola-rectangle law of Eq. 15, this can be expressed as:

$$W_{f2}^o = \frac{W_{f2}}{W_{c1}} = \frac{f_{fd}(\epsilon_{fu} - \epsilon_{f2})}{\frac{2}{3}f_{cd}\epsilon_{c2}}$$

(17)

where again we use subscript ‘f’ instead of ‘c’ to refer to SFRC (for instance, ϵ_{fu} means ϵ_{cu} for the SFRC). As stated above, the strength increase due to fibres is small and can be neglected (i.e. $f_{fd} = f_{cd}$ in Eq. 17). Then:

$$W_{f2}^o = \frac{3}{2}\left(\frac{\epsilon_{fu}}{\epsilon_{f2}} - 1\right)\frac{\epsilon_{f2}}{\epsilon_{c2}}$$

(18)

<table>
<thead>
<tr>
<th>W_{f1}^o ($= W_{f1}/W_{c1}$)</th>
<th>Mean (Std. dev.)</th>
<th>[Min.–Max.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.45</td>
<td>(0.52)</td>
<td>[0.91–3.73]</td>
</tr>
<tr>
<td>W_{f2}^o ($= W_{f2}/W_{c1}$)</td>
<td>2.83 (1.09)</td>
<td>[1.12–5.49]</td>
</tr>
</tbody>
</table>

Table 1: Statistics of the unit toughness increase for SFRC.
where the ratio $\epsilon_{f2}/\epsilon_{c2}$ equals W_{f1}° (Eq. 16). Then, solving for $\epsilon_{fu}/\epsilon_{f2}$ in Eq. 18 we get:

$$\frac{\epsilon_{fu}}{\epsilon_{f2}} = \frac{2}{3} \frac{W_{f2}^\circ}{W_{f1}^\circ} + 1 \tag{19}$$

Introducing the values in Table 1 for W_{f1}° and W_{f2}° we get a ratio of 2.30. Taking $\epsilon_{f2} (= \epsilon_{c2}$ for a SFRC) as 0.0029 (as derived above) we get that $\epsilon_{fu} (= \epsilon_{cu}$ for a SFRC) is 0.0067, whereas for $\epsilon_{f2} = 0.0025$ we obtain $\epsilon_{fu} = 0.0057$. So, finally we round the result and take 0.0060 as the value of ϵ_{cu} for a SFRC.

Note that values for W_{f1}° and W_{f2}° in Table 1 are the average values of the stress-strain curves of the database disregarding dependencies on fibre content, fibre quality, etc., and we assume that the toughness of the parabola-rectangle curve for plain concrete increases according to them. In other words, we get ϵ_{c2} and ϵ_{cu} for an SFRC by enforcing that the parabola and the rectangle yield the same energy enhancement as the average of the curves in the database. Observe that absolutely none of the SFRC specimens in the compressive database broke before reaching a strain of $3\epsilon_{f1}$, and most of them continued deforming way ahead of this value. Therefore, the mean values for W_{f1}° and W_{f2}° in Table 1 are on the safe side, and thus the new strain figures for SFRC in the curve defined in Eq. 15, namely 0.0025 and 0.0060, are on the safe side too.

4 Discussion

4.1 Compressive and flexural SFRC classification

The new model for the compressive stress-strain behaviour in SFRC in Annex L allows a complete description of the material response, as can be seen graphically in Fig. 5. The upper part plots the flexural stress versus the crack opening curves in non-dimensional format for several of the flexural performance classes (see Table 2, which reproduces Table L.2 of Annex L). These are called performance classes, but actually they only depend on the residual flexural strengths $f_{R,1k}$ and $f_{R,3k}$ experimentally determined according to EN 14651 [35]. The classification is based on a number —called SC (or σ_{SC} in this paper) for strength class— that corresponds to the minimum value required for $f_{R,1k}$ in MPa, and a letter associated to the ratio $f_{R,3k}/\sigma_{SC}$. For instance, class 4.0 b means that $\sigma_{SC} = 4.0$ MPa $\leq f_{R,1k} < 4.5$ MPa and $0.7 \leq f_{R,3k}/\sigma_{SC} < 0.9$ (see Table 2).

The lower part of Fig. 5 plots the new compressive stress-strain law in Annex L as described in Section 2 and explained in Section 3. The plot is in a non-dimensional format, the abscissa and ordinate representing $\epsilon_{c}/\epsilon_{c1} (= \eta)$ and σ_{c}/σ_{em}, respectively. Note that the intercept of the curve with the horizontal axis is equal to $\eta_{u} (= k)$. Since both ϵ_{c1} and k depend directly on $f_{R,1k}$ through Eqs. 1
Figure 5: Description of the flexural/compression behaviour of SFRC and meaning of the material classification.

<table>
<thead>
<tr>
<th>Ductility classes</th>
<th>Strength classes SC (f_{R,1k} \geq SC)</th>
<th>Analytical formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon_c)</td>
<td>(\frac{\sigma_R}{f_{cm}})</td>
<td>(\frac{f_{R,3k}}{f_{cm}} \geq SC)</td>
</tr>
<tr>
<td>(\epsilon_{c1})</td>
<td>(\frac{\sigma_{Nk}}{f_{cm}})</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0</td>
<td>(f_{R,3k} \geq 0.5 SC)</td>
</tr>
<tr>
<td>b</td>
<td>0.7 1.1 1.4 1.8 2.1 2.5 2.8 3.2 3.5 4.2 4.9 5.6</td>
<td>(f_{R,3k} \geq 0.7 SC)</td>
</tr>
<tr>
<td>c</td>
<td>0.9 1.4 1.8 2.3 2.7 3.2 3.6 4.1 4.5 5.4 6.3 7.2</td>
<td>(f_{R,3k} \geq 0.9 SC)</td>
</tr>
<tr>
<td>d</td>
<td>1.1 1.7 2.2 2.8 3.3 3.9 4.4 4.8 5.0 5.4 6.6 7.7 8.8</td>
<td>(f_{R,3k} \geq 1.1 SC)</td>
</tr>
<tr>
<td>e</td>
<td>1.3 2.0 2.6 3.3 3.9 4.6 5.2 5.9 6.5 7.8 9.1 10.4</td>
<td>(f_{R,3k} \geq 1.3 SC)</td>
</tr>
</tbody>
</table>

Table 2: Performance classes for SFRC in MPa as defined in Table L.2 of EC2 [73].
and 2, respectively, it would seem that there is no reason to add any additional number or letter to the SFRC classification. However, an SFRC has to define the compressive class along with the flexural performance class since it is apparent that the compressive strength correlates with the residual flexural strengths. The new compressive model in Annex L does not contain information about this correlation per se, but the multivariate analyses reported in [89–91] provide it. There it was found that the expression for the residual compressive strength as a function of the flexural behaviour is:

\[
\sigma_R = -1.77 + 1.807 f_{R,1k} + 9.12 \frac{f_{R,3k}}{f_{R,1k}}
\]

(20)

where the residual flexural strengths are introduced in MPa to obtain \(\sigma_R\) in MPa. Both \(f_{R,1k}\) and \(f_{R,3k}\) are the only significant parameters to get \(\sigma_R\). Interestingly, they are also the parameters defining the flexural performance class.

On the other hand, Eq. 12 already expresses the result obtained for \(\sigma_R/f_{cm}\). It should be noted that only \(f_{R,1k}\) was disclosed as a significant parameter to obtain the non-dimensional version of \(\sigma_R\) in Eq. 12. Combining Eqs. 12 and 20, the relation between the compressive strength and the residual flexural strengths follows as:

\[
f_{cm} = \frac{-1.77 + 1.807 f_{R,1k} + 9.12 \frac{f_{R,3k}}{f_{R,1k}}}{0.1839 + 0.02203 f_{R,1k}}
\]

(21)

where residual flexural strengths are introduced in MPa to obtain \(f_{cm}\) in MPa. This formula depends on the ratio \(f_{R,3k}/f_{R,1k}\), and thus it is only valid for SFRC with hooked-end fibres since the database in [89–91] contain results for this type of SFRC only.

Equation 21 gives an estimate of the compressive strength needed to obtain a definite flexural performance class with SFRC with hooked-end fibres, defined by the desired residual flexural strengths. Table 3 arrays all the estimates given by Eqs. 20 and 21 for each flexural performance class of Annex L. In each cell of the matrix, we give the estimate for the compressive strength \(f_{cm}\) needed to obtain the desired flexural performance class along with an estimate for the residual compressive strength. For instance, Table 3 indicates that you need at least a C35/45 (whose minimum \(f_{cm}\) is 43 MPa) to produce a class 4.0 b, whereas the expected minimum value for \(\sigma_R\) is 12 MPa. So, the complete classification of this SFRC should be C35/45 4.0 b. It bears emphasis that obtaining flexural performance class 4.0 b with a compressive class below C35/45 may be rather difficult.
Table 3: Performance classes for SFRC related with their residual flexural and compressive strengths (in MPa).

<table>
<thead>
<tr>
<th>Ductility classes</th>
<th>Strength classes SC (f_{R,1k} \geq SC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{R,3k})</td>
<td>1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0</td>
</tr>
<tr>
<td>(f_{cm})</td>
<td>4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0</td>
</tr>
<tr>
<td>(\sigma_R)</td>
<td>16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0</td>
</tr>
</tbody>
</table>

Table 3: Performance classes for SFRC related with their residual flexural and compressive strengths (in MPa).

4.2 Ductility in compression

The deformability in compression of SFRCs of each performance class can be estimated using the new stress-strain model in Annex L. Indeed, Eqs. 1 and 2 allow obtaining \(\varepsilon_{c1} \) and \(\varepsilon_{cu1} \) values for each flexural performance class, see Table 4 (we use subscript ‘\(f \)’ instead of ‘\(c \)’ to name parameters of a SRFC). Note that these strain values depend jointly on the compressive strength and the residual flexural strengths.

As aforementioned, Annex L follows the core of EC2 [73] in providing two constant values for the strains determining the parabola-rectangle used in ULS, namely \(\varepsilon_{f2} \) and \(\varepsilon_{fu} \) (again, subscript ‘\(f \)’ is for SFRC). It is done so for the sake of brevity and consistency since mirroring the structure of EC2 [73] for plain concrete avoids new formulas or parameters and subsequent definitions. However, it is also possible to give defining strains for the parabola-rectangle model for each performance class. It is appropriate to do so since ULS calculations may also benefit from having selected a flexural performance class for the SFRC element or structure under study. To do this, we assume that \(\varepsilon_{f2} \) takes the same value as \(\varepsilon_{f1} \). Then, we can use Eq. 19 to calculate \(\varepsilon_{fu} \) for each class, but in its dimensional version:

\[
\frac{\varepsilon_{fu}}{\varepsilon_{f2}} = 2 \frac{W_{f2}}{3 W_{f1}} + 1
\]

where \(W_{f1} \) and \(W_{f2} \) are now calculated with the complete stress-strain model (Sub-
Table 4: Performance classes for SFRC related with their relevant strains both for the parabola-rectangle model in ULS, ϵ_{f_2} and ϵ_{fu}, and for the stress-strain general model, ϵ_{f_1} and ϵ_{fu_1}, (strains in $\%$; SC in MPa).

<table>
<thead>
<tr>
<th>Ductility classes</th>
<th>Strength classes SC ($f_{R,1k} \geq SC$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>a: $\epsilon_{f_2} = \epsilon_{f_1}$</td>
<td>2.0</td>
</tr>
<tr>
<td>ϵ_{fu}</td>
<td>5.0</td>
</tr>
<tr>
<td>ϵ_{fu_1}</td>
<td>6.6</td>
</tr>
<tr>
<td>b: $\epsilon_{f_2} = \epsilon_{f_1}$</td>
<td>2.3</td>
</tr>
<tr>
<td>ϵ_{fu}</td>
<td>5.6</td>
</tr>
<tr>
<td>ϵ_{fu_1}</td>
<td>7.4</td>
</tr>
<tr>
<td>c: $\epsilon_{f_2} = \epsilon_{f_1}$</td>
<td>2.5</td>
</tr>
<tr>
<td>ϵ_{fu}</td>
<td>6.1</td>
</tr>
<tr>
<td>ϵ_{fu_1}</td>
<td>8.0</td>
</tr>
<tr>
<td>d: $\epsilon_{f_2} = \epsilon_{f_1}$</td>
<td>2.6</td>
</tr>
<tr>
<td>ϵ_{fu}</td>
<td>6.5</td>
</tr>
<tr>
<td>ϵ_{fu_1}</td>
<td>8.5</td>
</tr>
<tr>
<td>e: $\epsilon_{f_2} = \epsilon_{f_1}$</td>
<td>2.8</td>
</tr>
<tr>
<td>ϵ_{fu}</td>
<td>6.9</td>
</tr>
<tr>
<td>ϵ_{fu_1}</td>
<td>9.0</td>
</tr>
</tbody>
</table>

section 3.1) but assuming that the up and down stretches are perfect parabolas. Additionally, as W_{f_2} is the energy per unit volume absorbed between ϵ_{f_1} and $3 \epsilon_{f_1}$, we assume that the detracted area between $3 \epsilon_{f_1}$ and $k \epsilon_{f_1}$ can be calculated as if it was a triangle. The result for ϵ_{fu} is:

$$\frac{\epsilon_{fu}}{\epsilon_{f_2}} = \frac{2}{3} \left[(k - 1) - \frac{3}{4}(k - 3) \frac{\sigma_{R}}{f_{cm}} \right] + 1 \quad (23)$$

where k is the value for the downward stretch of the curve (Eq. 2), which coincides with the nondimensional strain of the intercept with the abscissa ($k = \eta_u$). Table 4 arrays the results of Eq. 23 for each performance class.

The constant values for ϵ_{f_2} and ϵ_{fu} that Annex L, section L.8.1 (4), proposes, namely 0.0025 and 0.0060, roughly coincide with these of classes 3.0 a, 2.0 b, and 1.0 c. So, using the proposed constant strains leads to slightly overestimating the ductility for weaker classes and underestimating it for the stronger ones, actually the majority of them. For instance, these strains for class 1.0 a are 0.0020 and 0.0050, whereas for class 8.0 e are 0.0035 and 0.0091. It bears emphasis that all these strain values are on the safe side since absolutely none of the SFRC specimens in the compressive database broke before reaching a strain of $3 \epsilon_{f_1}$, and most of them continued deforming way ahead this value [89–91].
4.3 Outlook about the impact of SFRC ductility on Eurocode 4

The benefits of an increased concrete ductility conferred by the addition of steel fibre reinforcement have consequences which reach beyond concrete structures according to Eurocode 2 [27]. For instance, the maximum compression strain of plain concrete in concrete ($\epsilon_{cu} = 0.0035$ for normal strength concrete in accordance with Eurocode 2 [27] and EC2 [73]) plays a relevant role also for the design of steel-concrete composite structures in accordance with Eurocode 4 [93].

For several composite cross-section configurations in fact the concrete component may reach its ultimate compressive strain before the structural steel component develops enough strain to reach yielding in most of the steel section, thus full plastic capacity may not be reached.

This aspect is explicitly considered when the strain-based resistance of the cross-section is performed (a recent review of strain-limited design method for composite beam sections is given by Zhang [71] and Schäfer et al. [72]). The described phenomenon depends on different effects that impact the rotation capacity, as the position of the plastic neutral axis, material strength and geometry of the cross-section. Thus when reaching the concrete ultimate strain before the plastic moment resistance of the steel section is attained, a concrete compression failure may occur in the compression zone even if the cross-section satisfies the Class 2 requirements (criteria to prevent local buckling effects in the steel sections prior to reaching of the plastic resistance, EN1993-1-1 [94]). On a general basis, a strain-based resistance with the stress-strain curves in accordance with EN 1992-1-1 [27] for concrete and reinforcement steel and EN1993-1-1 [94] for the stress-strain curve of structural steel would be required to consider the limited rotation capacity of the section due to the restrictions by the concrete. In addition, for composite beams with partial shear interaction, the strain discontinuity appearing in the composite connection shall be considered. To avoid this effort for practical design, Eurocode 4 [93] provides a simplified design method based on the full-plastic cross-section moment resistance introducing a reduction factor β. The reduction factors were derived by a large parametric study comparing the plastic and strain-limited resistance for a large spectrum of composite cross-sections and material combinations. For current Eurocode 4 [93] this study was provided by Hanswille et al. [95] and newer investigation for the second generation of Eurocode 4, prEN1994-1-1 [96], can be found in Schäfer et al. [97].

Furthermore, the use of steel grades such as S500 or higher (already foreseen in product standards [98], design codes for steel structures and the second generation of Eurocodes) requires developing higher strains to reach yielding. At increasing strain the cases of premature compression concrete failure become even more relevant, reducing the interest of high steel strength with composite structures.
The following configurations may lead to a limitation of the plastic moment resistance (a more detailed discussion of the configurations is given in [99]):

1. composite beam with a limited effective width of the concrete flange (e.g. edge beams, due to openings in the slab, use of precast slab elements);
2. composite beams with high strength steel (in particular for S420 or higher grades);
3. composite beams with an intensive concrete contribution (e.g. for partially encased composite beams with a large amount of reinforcement, fully encased composite beams such as filler beam decks and shallow-floor beams);
4. composite beams with asymmetric steel sections having a bottom flange area significantly higher than the top flange;
5. composite beams with hybrid steel sections having a bottom flange resistance significantly higher than the top flange;
6. concrete encased composite columns without external steel tube.

To quantify the impact that higher concrete ductility obtained by steel fibre reinforcement would bring for steel-concrete composite structures a calculation example is proposed corresponding to case 2 of above list. A typical composite beam cross-section with a standard profile and a concrete flange on top of the upper steel flange is considered (see Fig. 6). Complete interaction with full shear connection is assumed. The example considers sagging bending moment, therefore with the concrete component being entirely under compression.

The simplified method is based on a plastic stress block distribution assuming the whole cross-section attaining the plastic resistance, whereas the reduction factor β for the deep-lying neutral axis is applied as in the current design provisions of current Eurocode 4 [93] for the normal strength concrete. The simplified method is also applied with the reduction factor β proposed in the future version of the design code based on Schäfer et al. [97].

The advanced method foresees an integration of the material laws over the cross-section. The calculation is performed both with the non-linear stress-strain relationship according to subsection 3.1 as well as for the parabola rectangle explained in subsection 3.2, and with f_{cd} obtained following the provisions in the draft of the new Eurocode 4 [96] for calculation of the resistance of a cross-section of this type [97], for a compressive strength class C35/45. The results have a maximum difference of 2% (the energy consumption of both models is the same for the selected class C35/45 4.0 b) and for sake of simplicity only the ones obtained
Figure 6: Steel-concrete composite section considered in the example.

with the parabola-rectangle are reported in Fig. 6. For the steel material, the quadrilinear stress-strain relationship has been used according to [97].

Since steel is very ductile and can reach very large elongations before rupture, in this kind of cross-sections under sagging bending moment the maximum resistance is reached when the top fibre attains the maximum admissible concrete compressive strain (ultimate strain). Figure 7 shows that beside an improvement of the bending moment resistance, a remarkable increase of the section ductility is achieved. This leads to significant higher cross-section rotation capacity in plastic hinges when using SFRC than the one of plain concrete thanks to a pronounced yielding plateau which is more than doubled. The beneficial effects of this increased ductility will not be discussed here, but is focus of ongoing research and is hinted that it may contribute in redistributing bending moments in continuous systems and ensuring ductility of specific shear connection configurations.

As a conclusion, the increased concrete ductility achieved by SFRC in compression is promising for the optimization of some specific steel-concrete composite structures. For a future deployment of higher strengths for the structural steel sections (both for columns and beam applications) and the more and more widespread use of cross-section configuration with limited rotation capacity an increased concrete ductility appears essential.

It shall be reminded that the considerations exposed in this chapter have focused on the impact of the improved compression behaviour of SFRC compared to concrete without fibres: other advantages are of course expected by the improved tensile behaviour (crack limitation, durability, shear connection resistance), possibly an additional reason to combine these materials in steel-concrete composite structures.
Figure 7: Moment-curvature diagram of the cross-section of Fig.6 with different types of concrete slab.

5 Conclusions

Annex L of the new EC2 [73] considers the enhancement in ductility and toughness in compression due to fibres. It proposes to use the same stress-strain formulas for the compressive behaviour of plain concrete in the core of EC2 [73] but changes the strain parameters to account for the ductility increase. In particular, parameter k is used to define the initial slope of the curve in the ramp-up stretch, up to the stress peak, but changes after the peak to represent the intercept of the downward curve with the strain axis, and so it defines the energy consumption of the material after the peak. Similarly, Annex L also enlarges the strain values needed for the ULS calculation of SFRC sections. In this paper, we give detailed derivations of all the expressions in Annex L related to the compressive SFRC behaviour, which are based on a multivariate analysis of a large database [89–91].

In addition, we provide formulas to calculate the compressive strength needed to get a desired flexural performance class since the compressive behaviour of a base concrete is correlated with the residual flexural strengths of the corresponding SFRC. We give compressive strength values for each flexural performance class defined in Annex L of the new EC2 [73], which may be very useful to design a SFRC.

Regarding the strain values for ULS calculations, Annex L mirrors the ap-
proach for plain concrete and gives constant values of the parameters defining the parabola-rectangle model, ϵ_{c2} and ϵ_{cu}, for any SFRC. However, we propose particular values of these parameters for each flexural performance class, to take better advantage of the ductility increase of SFRC in stronger classes.

Finally, we highlight the importance of accounting for the real SFRC ductility in composite structures since the low deformation capacity of plain concrete makes that steel elements cannot be used to their limits. We provide an example of a composite beam with a deep neutral axis and high steel strength, which resists 15.4% more load and duplicates its rotation capacity with the new provisions in Annex L.

Acknowledgements

The authors gratefully acknowledge the financial support from the Ministerio de Ciencia e Innovación, Spain, through grants PID2019-110928RB-C31 and RTC-2017-6736-3, and the Junta de Comunidades de Castilla-La Mancha, Spain, through grant SBPLY/19/180501/000220.

Nomenclature

<table>
<thead>
<tr>
<th>CMOD</th>
<th>Crack mouth opening displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{cm}</td>
<td>Mean elastic modulus of concrete/SFRC in 150×300 mm2 cylinders</td>
</tr>
<tr>
<td>EC2</td>
<td>New Eurocode 2 (final draft, version 2022-11) [73]</td>
</tr>
<tr>
<td>f_{cd}</td>
<td>Design value of concrete/SFRC compressive strength</td>
</tr>
<tr>
<td>f_{fd}</td>
<td>Design value of SFRC compressive strength 1</td>
</tr>
<tr>
<td>f_{cm}</td>
<td>Mean compressive strength of concrete/SFRC in 150×300 mm2 cylinders</td>
</tr>
<tr>
<td>$f_{R,1k}$</td>
<td>Characteristic residual flexural strength for a crack mouth opening displacement of 0.5 mm</td>
</tr>
<tr>
<td>$f_{R,3k}$</td>
<td>Characteristic residual flexural strength for a crack mouth opening displacement of 2.5 mm</td>
</tr>
<tr>
<td>k</td>
<td>Coefficient</td>
</tr>
<tr>
<td>SC</td>
<td>Strength class</td>
</tr>
<tr>
<td>SFRC</td>
<td>Steel-fibre reinforced concrete</td>
</tr>
<tr>
<td>ULS</td>
<td>Ultimate limit state</td>
</tr>
</tbody>
</table>

1Annex L does not use parameters with subscript ‘f’ for referring to SFRC but uses subscript ‘c’ for plain concrete and SFRC. However, the complete definition and derivation of the compressive model need to differentiate between both types of materials since we require to refer to a base concrete (‘c’) and the SFRC resulting from reinforcing it with steel fibers (‘f’).
\(W_{c1} \) Volumetric deformation work in pre-peak branch of concrete/SFRC in 150 × 300 mm^2 cylinders (from \(\epsilon_c = 0 \) to \(\epsilon_c = \epsilon_{c1} \))

\(W_{c2} \) Volumetric deformation work in post-peak branch of concrete/SFRC in 150 × 300 mm^2 cylinders (from \(\epsilon_c = \epsilon_{c1} \) to \(\epsilon_c = \epsilon_{cu1} \))

\(W_{f1} \) Volumetric deformation work in pre-peak branch of SFRC in 150 × 300 mm^2 cylinders (from \(\epsilon_f = 0 \) to \(\epsilon_f = \epsilon_{f1} \))

\(W_{f2} \) Volumetric deformation work in post-peak branch of SFRC in 150 × 300 mm^2 cylinders up to \(3\epsilon_{f1} \) (from \(\epsilon_{f1} \))

\(W_{f1}^\circ = \frac{W_{f1}}{W_{c1}} \) Non-dimensional volumetric deformation work in pre-peak branch of SFRC

\(W_{f2}^\circ = \frac{W_{f2}}{W_{c1}} \) Non-dimensional volumetric deformation work in post-peak branch of SFRC

\(w_M \) Crack mouth opening displacement, CMOD

\(w_o = 1 \text{ mm} \) Coefficient to keep non-dimensionality

\(\epsilon_c \) Compressive strain in concrete/SFRC

\(\epsilon_{c1} \) Compressive strain in concrete/SFRC when the stress reaches the compressive strength in the stress-strain model for non-linear analysis

\(\epsilon_{cu1} \) Ultimate compressive strain in concrete/SFRC in the stress-strain model for non-linear analysis

\(\epsilon_{c2} \) Compressive strain in concrete/SFRC when the stress reaches the compressive strength in the ULS model

\(\epsilon_{cu} \) Ultimate compressive strain in concrete/SFRC in the ULS model

\(\epsilon_f \) Compressive strain in SFRC

\(\epsilon_{f1} \) Compressive strain in SFRC when the stress reaches the compressive strength in the stress-strain model for non-linear analysis

\(\epsilon_{f2} \) Compressive strain in SFRC when the stress reaches the compressive strength in the ULS model

\(\epsilon_{fu} \) Ultimate compressive strain in SFRC in the ULS model

\(\epsilon_{fu1} \) Ultimate compressive strain in SFRC in the stress-strain model for non-linear analysis

\(\eta = \frac{\epsilon_c}{\epsilon_{c1}} \) Non-dimensional compressive strain in concrete/SFRC

\(\eta_{cu} = \frac{\epsilon_{cu1}}{\epsilon_{c1}} \) Non-dimensional ultimate compressive strain in concrete/SFRC in the stress-strain model for non-linear analysis

\(\sigma_c \) Stress in concrete/SFRC

\(\sigma_{cd} \) Design value of compressive stress in concrete/SFRC

\(\sigma_f \) Stress in SFRC

\(\sigma_{Nk} \) Characteristic nominal/flexural stress

\(\sigma_R \) Compressive residual strength

\(\sigma_{SC} \) Strength class, SC
References

[92] M. Sargin, Stress-strain Relationship for Concrete and the Analysis of Structural Concrete Sections, Studies series, Solid Mechanics Division, University of Waterloo, 1971.

