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1.
approach to the simplified method 
proposed by EC-4

Concrete-filled tube sections are being increasingly use due 
to their structural performance, especially for their seismic 

behavior. Besides, these sections simplify considerabl the 
construction process and allow certain high-rise construc-
tion methods for tall buildings [1]. However, the design 
and validity process proposed by the European Standard 
(EC4) for this type of sections is not so simple than their 
execution. This paper pretends to bring more simplicity to 
the validity process, oriented to slender columns subject-

r e s u m e n

El Eurocódigo 4 sobre estructura mixta propone un método simplificado para diseñar secciones tubulares mixtas sometidas a 
estados combinados de compresión y flexión, como alternativa al método analítico general. Este método se basa en determinar 
la validez de una sección mediante la comparación de la combinación de fuerzas actuantes con el correspondiente diagrama de 
interacción N-M de la sección. Con el objetivo de considerar la esbeltez en la resistencia de la pieza, se introduce un factor re-
ductor de la resistencia, χ, que afecta la respuesta a compresión y también flexión combinada. Este texto propone la integración 
del coeficiente en una nueva aproximación numérica basada en el método simplificado, pensada para facilitar a arquitectos e in-
genieros la comprobación y diseño de este tipo de secciones. Con este objetivo, se propone una función polinómica dependiente 
de cuatro parámetros conocidos χ, χd, χpm, r y μmax, las ecuaciones de los cuales se detallan también a continuación.
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a b s t r ac t

Eurocode 4 about composite structures proposes a simplified method to design concrete-filled tube sections subjected to 
combined compression and bi-axial bending, as an alternative to the general one. This method is based on determining 
the validity of a section by comparing the acting forces with the interaction curve N–M. In order to take slenderness into 
account, a reduction factor χ is defined, leading to a reduction of the compression and bending strength. This text proposes 
a new approach based on the simplified method mentioned above, thought to provide designers a faster and simpler check-
ing and designing method for this typology of sections, including also buckling effects. With this purpose, a polynomial 
function is proposed depending on five known parameters: χ, χd, χpm, r and μmax, for which a new formulation is presented.
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ed to combined compression and bending. Eurocode 4 for 
composite structures UNE-EN 1994-1-1:2011 [2] propos-
es two different methods to check and design composite 
columns (for sway and non-sway columns): the general and 
the simplified method.

While the general method requires specific software to 
check any geometry of composite sections, the second one 
is especially thought to be easily used manually by following 
simple expressions proposed in the European codes. This sec-

ond approach shows clear restrictions and requires the sec-
tion to satisfy a list of conditions.

Although the simplified method of EC4-1-1 pretends to 
be fast and simple to use, the truth is that the need of drawing 
one or two interaction diagrams every time slows considera-
bly the process and leads the manual checking to a non-op-
erative methodology. This text pretends to provide designers 
with some new practical expressions derived from the men-
tioned simplified approach, in which the strength decrement 
by buckling effects is also implemented in the compression 
and bending interaction diagram. Since new expressions are 
based on this simplified method, the restrictions are the same 
as those established by the European codes. Shear force ef-
fects should be taken into account only in case that the acting 
shear force on the steel section is higher than the 50% of 
the shear resisted force by the tube, as is considered by the 
Eurocode 4.

This article refers exclusively to circular and rectangular 
concrete-filled tube sections, composed by an outer steel tube 
and a concrete filling inside (with or without reinforcement 
bars). The proposed formulation is limited by the restrictions 
of the simplified method of EC-4, although other codes es-
tablish different more restrictive limits [3–6].

1.1. Consideration of buckling

Flexural stability of a composite column within a structure 
may be checked by following 3 different methods, according 
to the UNE-EN 1994-1-1:2011 [2]:

a) By global analysis of the structure taking second-order-
moments and global imperfections into account. The val-
idation of the cross-section has to be done by means of 
the simplified method of EC-4.

b) By individual analysis of the member, considering end-
moments and forces from global analysis, including sec-
ond-order effects and global imperfections (when rele-
vant),through coefficients k and β. The validation of the 
cross-section has to be also done by means of the simpli-
fied methodof EC-4.

c) By using the buckling curves (for compressed elements) 
in order to consider second-order effects and member 
imperfections. This verification should take into ac-
count end forces and moments of the structure, includ-
ing global imperfections and second-order moments 
when relevant. To use bucklingcurves it is needed to 
use the buckling length of the element,equivalent to 
the system length.

In the simplified procedure which is proposed here, the sta-
bility of the column is taken into account by using the last 
option, which is based on the European buckling curves. 
These curves provide a reduction factor (χ) of the com-
pressive strength of the member, depending on the struc-
ture and slenderness. In this way, second-order moments 
coming from local imperfections are considered by this 
parameter, by reducing the axial capacity of the column. 
Needless to say that second-order effects coming from 
global imperfections and global geometry of the structure 
should be also considered apart by end moments and forces 
to the member.

Nomenclature

X buckling coefficient
A section area
β boundary conditions factor
D diameter
b section width
δ steel contribution ratio
e eccentricity
(EI)e effective flexural stiffness
E Young modulus
f strength
h distance to the centre-line
I moment of inertia
L length
M bending moment
N axial force
R  section radius
r ratio of the smaller to the larger end moment
t thickness
W section modulus
μ non-dimensional moment
χ non-dimensional axial force
λ relative slenderness
γ safety factor

Subscripts

y steel
c concrete
s reinforcement
pm, pc corresponding value to concrete core
pa corresponding value to steel tube
ps corresponding value to reinforcement bars
pcn corresponding value to concrete in a 2hn area
pan corresponding value to steel tube in a 2hn area
psn corresponding value to reinforcement in a 2hn area
k characteristic value
d design value [reduced by safety factor]
Ecm secant modulus of elasticity for concrete
R resisted value
S applied value
p, pl plastic
cr Euler critical load
n neutral axis
max maximum value
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Thus, the final compressive strength affected by the buck-
ling effects can be obtained through the following expression:

NRd  = χ Npl,Rd (1)

In order to calculate the value of parameter χ for each 
particular case, it will be necessary to previously find out cer-
tain geometrical and resistant parameters of the column. The 
first of these parameters is the relative slenderness ratio of 
the column.

1.2. Parameter χ.

The relative slenderness ratio can be obtained by:

λ =  (2)
Npl,R

Ncr

where the numerator is the plastic compressive strength [in 
characteristic values], and the denominator is the value of the 
Euler critical load.

Npl,Rd = Ac fck + Aa fyk + As fsk (3)

Ncr =  (4)
π2 (EI )eff

(L β)2

where (EI )eff is the effective stiffness of the section and β 
the boundary condition factor proposed by EC4-1-1 [2]. In 
a conservative way, a value of 1.0 can be used for non-sway 
columns. The effective stiffness of a composite circular and 
rectangular tubular section is:

(EI )eff  = Ea Ia + Es Is + Kc Ecm Ic (5)

where coefficient Kc  is 0.60 and Ia , Is , and Ic  are the second 
moments of area of components.

To take long-term effects on the flexural stiffness of a sec-
tion into account, the modulus of stiffmess of concrete Ecm 
should be reduced to the value Ec,e,f,f , defined by EC according 
to the following expression:

Ec,eff  = Ecm (6)
1

1+(NG,Ed / NEd ) ϕt

being ϕt the creep coefficient according to 5.4.2.2.
Then, using the obtained λ, coefficient χ can be calculated 

from the following expressions:

χ =  (7)
1

φ+   φ – λ2

φ = 0.5 [1 + a ( λ – 0.2) + λ2 ] (8)

The factor α depends on the buckling curve used for each 
type of composite section [Table 1]. According to EC-4, cir-
cular and rectangular concrete filled tubes with a reinforce-
ment ratio up to 3% of concrete area require a value of 0.21, 
corresponding to curve “a”. The rest with reinforcement ratios 
between 3 and 6%, require a coefficient of 0.34 from buckling 
curve “b” of Eurocodes, as any other composite section [6].

TABLA 1

European buckling curves.
 

Curve a Circular and rectangular concrete filled tubes As ≤ 3%

Curve b Circular and rectangular concrete filled tubes 6% ≥ As ≤ 3%

	

Figure 1. Interaction diagram N–M from four basic points

1.3. Squash or plastic compressive resistance

The maximum compressive or load (or “squash load”) resist-
ed by a composite section is defined in EC4-1-1 through the 
following expression:

Npl,Rd =             +            +               (9)
Aa fyk Aa fsk Ac fck

γa γs γc

For circular concrete-filled tubes, the European code al-
lows to increase their compressive strength as a consequence 
of the confinement effect developed by the steel tube over 
the core. Thus, the ultimate resistance may increase up to 
15% over the nominal one, according to the expression:

Npl,Rd = Aa ηa   fyd  + As   fsd  + Ac   fcd   1+ ηc (10)t fy

d fck

Coefficients ηa and ηc proposed in the Eurocode define 
the variation of strength in steel and in concrete. The for-
mer refers to the decrement of resistance in steel as a conse-
quence of the bi-axial tensional state, and the latter refers to 
the increment of compressive strength in concrete due to the 
tri-axial state. These coefficients are defined by [1] as:

ηc0 = 4.9 – 18.5 λ + 17 λ2  ;  ηc0  ≥ 0 (12)

ηa0 = 0.25 (13+2 λ )  ;  ηa0  ≤ 1,0 (13)

0 <      < (11)
ηc = ηc0    1– 

ηa = ηa0 + (1– ηa0) 

10e
d

10e
d

e
d

1
10

1.4. Combined compression and bending resistance

The resistance of a concrete-filled steel tube subjected to com- 
pression and bending, according to Eurocode 4, can be ob-
tained by drawing one interaction diagram N–M for each axis 
of the section, by using four singular points. These four points 
come from different positions of the neutral axis [Fig. 1].
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In order to calculate the squash load and the bending re-
sistance of a section at points A, B, C and D, different situa-
tions have to be considered:
Point A NA = Npl,Rd

 MA = 0

Point B NB = 0

 MB = Mpl,Rd

Point C NC = Npm,Rd

 MC = Mpl,Rd

Point D ND = Npm,Rd /2

 MD = Mmax,Rd

where the plastic moment resistance of the section Mpl,Rd is:

Mpl,Rd = fyd (Wpa−Wpan )+ 0.5 fcd (Wpc−Wpcn)+ fsd(Wps−Wpsn ) (14)

Wpc and Wpa are the plastic section modules for the con-
crete core and the steel tube respectively, and Wpcn and Wpan 
the plastic section modules for both in the area limited by a 
distance of 2hn, being hn the distance of the neutral axis from 
the centroid.

The maximum bending moment resisted by a composite 
section, when it is also subjected to axial load, is [Moment in D]:

Mmax,Rd = fyd  Wpa  + 0.5 fcd  Wpc  + fsd  Wps  (15)

To design a concrete-filled tube under combined com-
pression and bi-axial bending, it is necessary to check the 
validity of the section in both axes. According to Eurocode, 
imperfections should be only considered in the plane which 
failure is expected to occur; in case of being ambiguous, both 
axes must be checked.

EC4-1-1 limits the non-dimensional moment to a ratio 
aM , which is 0.9 for steel grades S235 and S355 and 0.8 for 

steel grades S420 and S460 in case of uni-axial compression 
(steel and to 1.0 in case of bi-axial compression [Eqs. (16)–
(19)] [Fig. 2].

  ≤ aM (16)

  ≤ aM (17)

                    +  ≤ 1.0 (18)

 μy = (19)

My,Sd   
μy  Mpl,Rd

Mz,Sd   
μz  Mpl,Rd

My,Ed   
μy  Mpl,Rd

My,Ed   
aM  Mpl,Rd

Mz,Ed   
μz  Mpl,Rd

where the non-dimensional moment resisted by a section is 
μ [considering buckling effects], obtained from χ and χn. The 
value χn is defined below by the European standards for con-
crete-filled tubes as follows, depending on parameter r (the 
ratio of the smaller to the larger end moment of the column):

χn =                 χ  for  λ ≤ 2.0 

r =                  (20)

(1 – r)
4

Mmax

Mmin

The influence of shear on the resistance to combined com- 
pression and bending forces should be taken into account 
when determining the interaction curve if the shear force 
Va,Ed on the steel section exceeds 50% of the design shear 
resistance Va,pl,Ed . Under this assumption, the interaction 
of shear should be considered by reducing the design steel 
strength by (1 − p) fyd  in the shear area, according to UNE-
EN 1994-1-1:2011.

2.
mechanical properties of the composite 
section

2.1. Determination of neutral axis

To calculate the maximum bending strength of a concrete- 
filled tube section by following the proposal of the simplified 
method of UNE-EN 1994-1-1:2011 [2], it is necessary first 
to determine the neutral axis of the cross-section.

In this way, by equating tension and compression forces 
from position of neutral axis hn [Fig. 3], it is derived that the 

	

Figure 3. Determination of hn in circular sections.

Figure 2. Interaction diagram My – Mz [2].
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compressive force generated by concrete above this axis must 
be equal to the traction force of steel tube (F1,a) within a re-
gion limited by a distance of 2hn  from the centroid:

Fc = F1,a  (21)

The Appendix C of UK National Annex to Eurocode 4 [7] 
proposed an approximate expression to calculate the posi-
tion of neutral axis for circular and rectangular concrete-filled 
tube sections, with a 15% maximum deviation [Eq. (22)], 
since it is very difficult to calculate the exact value.

Npm – Asm (2fsd – fsd) 
2d fcd + 4t (2fyd – fcd)

hn =                  (22)

2.2. Determination of plastic section module

In circular sections, the plastic section modulus of the core 
can be obtained by:

Wpc =       (R – t)3             (23)4
3

while the plastic section modulus of steel tube by:

Wpa =       [ R3– (R – t)3 ]              (24)4
3

Within the area limited by a distance 2hn from the centroid 
of the section, the plastic section modulus of the core can be 
obtained according the following expression:

Wpcn =          (R – t)3         [ (R – t)2 – hn
2
 ] 

3              (25)4
3

while regarding to the tube:

Wpac =          R3  –      (R – hn
2 )3 – (R – t)3 +      [ (R – t)2 – hn

2
 ] 

3
 (26)4

3

Repeating the same analysis for rectangular sections, the fol-
lowing expressions are obtained:

Wpan =                  (29)

Wpcn =                  

Wpa = (28)

Wpcn =                  (27)

B hn
2  –  (B – t) – ( hn – t)2

4

(B – t) – ( hn – t)2

4

B H 2 – (B – t) – (H – t)2

4

(B – t) – (H – t)2

4

2.3. Determination of the plastic bending resistance

According to UNE-EN 1994-1-1:2011 [2], the plastic bend- 
ing moment which can be resisted by a section at point B of 
its interaction diagram can be written as:

Mp,Rd = fyd (Wpa − Wpan ) + 0.5 fcd (Wpc − Wpcn )

+ fsd (Wps − Wpsn ) (30)

By using the tables published by CIDECT in the Design 
Guide no. 5 [8] (Fig. 4), obtained from a wide regression of 
results, some analytic expressions are proposed in order to 
calculate the plastic moment resistance of a section, need-
less to draw its neutral axis before. In this way, for circular 
concrete-filled tubes, the plastic moment resistance can be 
quickly obtained through the following expression:

Mpl,Rd =  m                         fyd                  (31)
d 3– (d–2t )3

6
where the value of m can be calculated using Table 11 of the
Design Guide of CIDECT:

m  =  – 0.646 δ + 1.425 (32)

For circular sections, depending on a linear regression of re-
sults from sections with different diameters, thicknesses and 
material strengths:

m  =  – 0.402 δ + 1.342 (32)

For rectangular and square-shaped sections, the plastic mo-
ment resistance can be obtained from [8]:

Mpl,Rd =  m                                      fyd                  (34)
h 2 b– (h–2t )2 (b–2t )

4
From Table 9 of the same design guide [8], the following 
diagram is obtained for rectangular sections:
The following expression is obtained from a linear regression 
of the diagram in Fig. 5:

m  =  – 0.402 δ + 1.342 (35)

Using the same methodology for rectangular sections of dif-
ferent slenderness h/t = 0.5 and h/t = 2, the value of m can be 
calculated by two linear equations depending on δ:

 

m          = 0.5   = –0.235 δ + 1.215             (36)h
t

m          = 2   = –0.568 δ + 1.475             (37)h
t

Figure 4. Coefficient m for different values of δ in circular sections. 
Values from [8].
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In case of having reinforcement bars inside the concrete core, 
its contribution in the bending response should be added to 
the general plastic moment resistance of the composite sec-
tion. The plastic moment resistance of the reinforcement can 
be obtained through [Eq. (38)].

Mpl,s,Rd = ∑  |ei| Asi  fsd          (38)

with:
As : area of reinforcement bars.
|ei|: distance of the bar to the centre-line of the section.

The increase of plastic moment resistance provided by re-
inforcement can be approximated by different expressions, 
depending on the general shape of the section:

ΔMpl = Mpl,s,Rd (39)

For circular sections:

(r–30)2 – 8 [(r–30)2 – p Ac/π]3/2

6
Mpl,s,Rd =                                           fsd          (40)

where r = R − t, and supposing that reinforcement is uniform-
ly distributed around the perimeter of the section.

For rectangular or square sections:

ρ Ac
 (h – t – 30)

4
Mpl,s,Rd =                          fsd          (41)

h is the height of the section, and ρ its reinforcement ratio:

As

Ac
ρ =           (42)

2.4. Determination of the maximum moment resistance ratio
 
According to the previous section of this paper, the plas-
tic moment resistance of a section can be obtained by [Eq. 
(30)]. Contrarily, the maximum bending moment resistance 
in presence of axial force [with a value of load equal to 50% 
of the compressive strength of concrete core] is:

Mmax = fyd Wpa + 0.5 fcd Wpc + fsd Wps (43)

Then, the non-dimensional maximum moment resistance
ratio referred to Mpl,Rd will be (Fig. 6):

μmax =           (44)
Mmax

Npl,Rd

The maximum moment resistance ratio for concrete filled 
steel tube sections can also be obtained directly by means of 
the following Table 2 depending on δ.

δ =           (45)
Aa  fyd

Npl,Rd

where : 0.2 ≤ δ ≤ 0.9

Alternatively, μmax can be calculated by a polynomial equa-
tion (46) obtained from the values shown in Table 2, for any 
shape of concrete filled tubes (Fig. 7).

μmax = −5.144 δ 3 + 10.77 δ 2 − 7.657 δ + 2.916 (46)

Figure 5. Coefficient m for different values of δ in rectangular sec-
tions. Values from [8].

Figure 6. Maximum moment resistance.

	 	

δ µmax µmax   (1) µmax   (0.5) µmax   (2) 

0.20 1.800 1.810 1.815 1.840 
0.25 1.580 1.601 1.610 1.610 
0.30 1.430 1.450 1.450 1.460 
0.35 1.330 1.330 1.340 1.320 
0.40 1.260 1.250 1.260 1.280 
0.45 1.200 1.200 1.200 1.220 
0.50 1.150 1.150 1.150 1.180 
0.55 1.120 1.120 1.120 1.130 
0.60 1.100 1.100 1.100 1.110 
0.65 1.090 1.090 1.090 1.100 
0.70 1.070 1.070 1.070 1.080 
0.75 1.050 1.050 1.050 1.070 

	

	

TABLE 2
Values of mmax depending on δ.
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Curiously, μmax depends only on the steel contribution ratio 
and the shape of the tube has almost no influence on this 
value. The third degree polynomial equation is also valid for 
reinforced sections, provided that its contribution can be in-
tegrated in the value of δ, Npl,Rd and Mpl,Rd .

μmax is a determining variable of the composite section 
behavior, as will be shown later in the new formulation pro-
posed in this paper.

2.5. Determination of non-dimensional compressive 
strength of concrete core

One of the parameters defined by the simplified method of 
EC-4 [2] is the non-dimensional compressive strength of the 
core. It corresponds to the ratio between the compressive 
strength of the core under compression and the squash load 
of the global composite section. This value can be defined 
analytically:

χpm =           (47)
Ac  fcd

Npl,Rd

A linear diagram can be obtained, from an analysis of sev- 
eral cases of different diameters, tube thicknesses and materi-
al strengths, as it is shown in Fig. 8:

χpm =  1 – δ      (48)

3.
new approach proposed

3.1. Sectional design from the simplified method of EC-4

According to the simplified method proposed in EC4-1-1, 
a concrete-filled tube section is valid under combined com-
pression and bending in case of satisfying the interaction di-
agram area. For this purpose, the European code proposes a 
specific methodology to determine this diagram from four 
known points, result of different positions of the neutral axis 
– as mentioned in Section 1 of this paper.

A practical consequence of this process is the need of 
drawing an interaction diagram N–M for every particular case, 
with the aim of obtaining the maximum moment that the sec-
tion can resist, depending on the percentage of axial load.

The process is more complicated when dealing with slen-
der columns, when the ultimate compressive load is sensibly 
lower than the squash load of the section. Then, the interac-
tion diagram defined by four points of EC4 is no longer valid 
and it is necessary to redraw a new function, by implement-
ing a corresponding buckling reduction.

The new methodology dealt with in this paper propos-
es an analytical approximation to this process, by defining 
a new function corresponding to the interaction diagram of a 
section with buckling effects directly incorporated. This 
way, the new methodology proposes to compare the acting 
non-dimensional bending moment with the maximum mo-
ment resistance of the section, depending on load percentage. 
The section is valid when the module of the acting vector (d) 
is lower than the module of the resisting vector (Rd).

See Fig. 9.
The new methodology proposed here tries to optimize 

the process of checking validity by means of suppressing the 
drawing of interaction diagrams and the implementation of 
buckling effects.

3.2. New design approach

The new approach is based on defining an approximate func- 
tion, capable of reproducing the reduced interaction diagram 
of a composite section:

μd = f (χd ) (49)

Figure 7. Values of μmax depending on δ.

Figure 9. Methodology of checking validity of a section.

Figure 8. Values of χpm depending on δ for rectangular sections.
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With this purpose, function f has been defined in two dif-
ferent parts: one linear between a–c, and the second parabolic 
between c–d–b. In zone a–c, and according to British Stand-
ards [7], the interaction diagram can be approximated by a 
linear equation:

μd = B χd + C  (50)

And in part c–d–b, the diagram can be replaced by a par-
abolic equation according to [Fig. 10]:

μd = A' χd
2 + B' χd + C' (51)

with this assumption, coefficients A, B and C can be ob-
tained from four known points:

a = (0, 1)    b = (1, 0)

c =  1, χpm     d =  (μmax  ,  χpm /2)

The coefficients of the linear equation are:

A = 0 (52)

B =                  (53)

C =                  (54)

1
χpm –1

–1
χpm –1

And the coefficients of the parabolic equation are:

A′ =                  (55)
4 ( μmax – 1)
– ( χpm )2

B′ =                  (56)
4 ( μmax – 1)
– ( χpm )2

C′ = 1 (57)

Considering these coefficients, a new function depending 
on three variables is obtained:

μd = f ( χd, χpm, μmax ) (58)

By replacing coefficients A, B and C in the original func-
tion for zone a–c:

1
χpm –1

–1
χpm –1

μd =                    χd  +               (59)

In the same way, parabolic equation in zone c–d–b is:

4 ( μmax – 1)
– ( χpm )2

4 ( μmax – 1)
χpm

μd =                            χd
2  +                                  χd + 1 (60)

3.3. Implementation of buckling effects

When calculating the maximum moment resistance ratio of a 
section μ for a specific axial load percentage χd , it is necessary 
to consider buckling effects.

According to Fig. 2 from European Standards EC4-1-1, 
the second-order moment resistance ratio for slender col-
umns is:

μk  =                  (61)
χ – 1

χpm – 1

That is the moment resistance ratio of a section for a cer-
tain axial load ratio χ, which is just the maximum moment 
resisted by a section depending on its slenderness and accord-
ing to buckling curves from EC-3.

(χ – 1)
(χpm – 1)

μ′   =                  (62)
(χd – χn)
(χ – χn)

For concrete-filled steel tubes, the lower limit from which 
second-order moments do not have to be considered:

χn  =                         for  λ ≤ 2.0 (63)
(1 – r) χ

4

Introducing Eq. (63) into Eq. (62):

μk  =                 

μk  =                                              χd – (64)

χ – 1
χpm – 1

[4 χd –  ( 1 – r) χ]
[(3+r) χ]

(1 – r) (χ – 1)
(3+r) ( χpm –1)

4 (χ – 1)
(3+r) ( χpm –1) χ

Being r the ratio of the smaller to the larger end moment, 
according to chapter 4.8.3.13 of EC4-1-1.

This way, subtracting Eq. (64) from Eq. (59):

1
χpm –1

1
χpm –1

μd =                      1–                      χd

+                     1 – (65)
(1 – r) (χ – 1)

(3+r)

4 (χ – 1)
(3+r) χ

And applying the same operation to Eq. (59):

4 ( μmax – 1)
– ( χpm )2μd =                            χd

2

+    1 + (66)
(1 – r) (χ – 1)
(3+r) ( χpm –1)

4 ( μmax – 1)
– ( χpm )2+                          –                                                 χd

4 (χ – 1)
(3+r) ( χpm –1) χ

Figure 10. Simplified interaction diagram.
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Consequently, the proposed function which has to be co-
incident with reduced interaction diagram, depends on five 
known variables:

μd = �  (χ
d , χpm , χ, μmax , r )  (67)

3.4. Combined compression and bending

For combined compression and bending [Fig. 11], and ac-
cording to chapter 1.4 of this text, EC4-1-1 proposes an in-
teraction diagram for each axis μy , μz depending on the value 
of the non-dimensional axial force χEd .

It will be necessary to check the section with a lower per-
centage of strength due to buckling effects only in its minor 
axis [according to EC4-1-1]. This way, a tridimensional va-
lidity surface is generated by composing the interaction di-
agrams in the two axes [Fig. 12], one of them reduced by 
buckling effects.

In order to check a circular section subjected to com-
bined bi-axial bending and compression, a combination of 
moments in the two axes will be enough. The following func-
tion may be satisfied:

∑ μEd ,≤ f (χ
d , χpm , χ, μmax , r )  (68)

In particular:

∑ μ,Ed ≤ A χd
2 + B χd  + C (69)

For circular sections:

∑ μ,Ed =    μy,Ed2 + μz,Ed2 (70)

The validity process for square and rectangular sections is 
quite different from the one for circular sections, due to the 
presence of two different axes. In these cases, and according 
to EC4-1-1, it will be only necessary to check the section 
with buckling effects implemented in its minor axis. In the 
approach which is proposed in this paper, an extra coefficient 
D is defined in order to describe the proportion between 
bending moments with and without buckling effects in their 
respective axes. General condition for validity is:

μy,Ed

Ay χd
2 + By χd  + Cy

μy,Ed

Az χd
2 + Bz χd  + Cz

                                        +                        ≤ 1  (71)

μz,Ed is considerated as the acting moment in the major axis 
[in this axis there is no need to consider buckling effects]. 
The ratio between these two non-dimensional moments [co-
efficient D] is:

Ay χd
2 + By χd  + Cy

Az χd
2 + Bz χd  + Cz

[With buckling in Y]

[With buckling in Z]
                                        +                        (72)

For the second interval χpm > χd >

(A χd
2 + B χd  + C )  χpm

2

4 (1 –  μmax )  χd ( χd – χpm) + χpm
2  D =                        (73)

Resulting in:

μy,Ed

[Ay χd
2 + By χd  + Cy ] 

D μz,Ed

[Ay χd
2 + By χd  + Cy ] 

                                      +                                      ≤ 1  (74)

What is:
μy,Ed + D μz,Ed  ≤  [Ay χd

2 + By χd  + Cy ] (75)

Accepting coefficients Ay, By y Cy and non-dimensional 
moment μy,Ed, always referred to minor axis of the section.

3.5. Proposed expressions

This paper proposes a new methodology for checking the va-
lidity of concrete-filled tubes subjected to compression and 
bending, with buckling effects also implemented according 
to simplified method of Eurocode 4. With this purpose, a new 
second order polynomial function is defined; this function 
depends on five known variables, as mentioned before:

�  (χ
d , χpm , χ, μmax , r )  = A χd

2 + B χd  + C (76)

Despite of this paper is oriented to concrete-filled tubes, 
equations given below are also valid for any other compos-
ite symmetric section, by respecting restrictions and criteria 
proposed in EC-4.

Figure 11. Combined compression and bending state.

Figure 12. Interaction diagram N – My – Mz. 
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Defining the following variables:

χ, χpm , r, μmax

Applied compressive non-dimensional load χd:

χd =   (77)
NSd

Npl,Rd

For circular concrete filled sections, the squash load Npl,Rd

is defined in EC4 as:

Npl,Rd = Aa η2  fyd + As  fsd + Ac  fcd    1 + η1 (78)t
d

fy

fck

The non-dimensional axial force corresponding to concrete 
core χpm :

χpm =   (79)
Ac  fcd
Npl,Rd

According to Section 2.4:
Xpm = 0.994 − 1.433 δ for circular sections.
Xpm = 1 − δ for rectangular sections.

The reduced non-dimensional axial load for buckling ef-
fects χ [according to 1.2.1].

The ratio of the smaller to the larger end moment of the
column, r :

r =   (80)
MSd max

MSd min

The acting non-dimensional moments can be obtained:

μy,Ed =   (81)
Myd

Mpl,Rd

μz,Ed =   (82)
Mzd

Mpl,Rd

where plastic moment of the section Mpl,Rd is obtained from
expressions proposed in Section 2.3 of this paper. Finally, the
non-dimensional maximum moment resistance of the sec-
tion, according to Eq. (46):

μmax = −5.144 δ3 + 10.77 δ2 − 7.657 δ + 2.916

Coefficients A, B and C in formulation proposed corre-
spond always to the minor axis of the section.

Finally, a section subjected to combined compression and 
bending is valid in case of satisfying the following conditions:

For circular sections:

μ,Ed ≤ A χd
2 + B χd  + C (83)

For rectangular sections:

μy,Ed + D μz,Ed ≤ A χd
2 + B χd  + C (84)

With the following restrictions:

μy,Ed ≤ 0.9  A χd
2 + B  χd  + C   ≤ 0.9 (85)

0.9
Dμz,Ed ≤ 0.9 D–1 [Ay χd

2 + By χd  + Cy ] ≤  (86)

Where coefficients A, B, C and D are defined as:

if χ > χd ≥ χpm   

A = 0 (87)

1
χpm –1

–1
χpm –1

B =                      1–                       (88)

+                     1 – (89)
(1 – r) (χ – 1)

(3+r)

4 (χ – 1)
(3+r) χ

χpm –1
χd –1D = (B χd + C ) (90)

if χpm > χd >   
1 – r

4    

χ  

4 (1 – μmax )
( χpm )2

4 ( μmax – 1)
χpm 

A =                                                (91)

B =                          –                   (92)
4 (χ – 1)

 ( χpm –1) χ (3+r)

(A χd
2 + B χd  + C )  χpm

2

4 (1 –  μmax )  χd ( χd – χpm) + χpm
2  D =                        (94)

C =    1 + (93)
(1 – r) (χ – 1)
(3+r) ( χpm –1)

if     χd >   
1 – r

4    

χ  

4 (1 – μmax )
( χpm )2

4 ( μmax – 1)
χpm 

A =                                                (95)

B =                                             (96)

 D = 1                      (98)

C = 1  (97)

The formulation proposed above do not involve shear 
effects in order to simplify the final expressions; to take lon-
gitudinal and transversal shear also into account [7] a reduc-
tion of thickness of the steel tube can be made as an approx-
imate method.
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4.
application curves

The result of applying the method proposed above is a group 
of interaction curves which become modified according to 
different values of χ, for different values of relative slender-
ness [Fig. 13].

Thus, this methodology provides the possibility of a 
simpler and quicker process to check the validity of con-
crete-filled steel tube section subjected to combined com-
pression and bending, by also considering buckling effects of 
the column.

In Fig. 13 several interaction curves are shown for dif-
ferent values of χ [directly related to the slenderness of the 
column] for a circular concrete-filled tube specimen of 300 
mm of diameter and 5 mm of wall thickness.

As mentioned before, this approach is based in a simpli-
fication of the original interaction curve N–M in two sim-
pler equations: a parabolic and a linear one. It is important 
to point out that the difference between real and simplified 
values is quite small, and always by the side of safety.

To quantify this deviation from the original diagrams, dif-
ferent curves according to different steel contribution ratios 
have been analyzed; the higher is the steel contribution ratio 
of the section higher is the deviation between both curves, 
as is shown in Fig. 14. This graphic presents the relation be-
tween real and simplified interaction diagram area, depend-
ing on δ.

In order to verify the proposed method, a set of calcu-
lated curves have been compared with a set of experimental 
results by using slender and short columns from Fujinaga T., 
Doi H. and Sun Y.P. [8] presented in 14th World Conference 
on Earthquake Engineering. Specimens tested by the authors 
mentioned before are listed in Table 3 and named depending 
on L/D ratio, r end moment ratio [+1.0, +0.5, +0.0, −0.33, 
−0.66, −1.0, etc.], concrete strength [27 or 60 N/mm2] and 
eccentricity [e]:

Axial loads are expressed in kN and moments in kNm.
Sections tested are square-shaped [125 × 125 × 3.2 mm], 

made of steel STKR400 with fy = 358 N/mm2 and filled with 
concrete (27 and 60 N/mm2 strength). Experimental results 
have been superimposed over new interaction diagrams de-
rived from simplified method proposed in this paper, without 
applying material strength reduction coefficients. Dispersion 
of results is as follows in Figs. 15 and 16.

The majority of the specimens used for calibration show a 
good agreement between with the obtained results by means 
of the proposed simplified methodology. Table 3 shows the 
deviation of obtained values with experimental ones in terms 
of combined strength (or the available strength vector “d” 
that represents the structural capacity of the section under 
combined compression and bending).

The proposed method seems to be conservative, accord-
ing to the comparison shown above. Most analyzed speci-
mens resists slightly more than the strength predicted by the 
proposed method, as the deviation ratio is less than 1.00. 
Specimens that show a significant difference between the 
experimental results and theoretical ones are those with neg-
ative bending moment ratio (r); in these cases, the real tested 
specimens resist up to a 24% more than the predicted by the 
method. This is basically due to the fact that the column is 
subjected only to one curvature.

5.
conclusions

Simplified method proposed by the EC-4 to determine the 
validity of a composite section subjected to compression and 
bi-axial bending, leads the designer to a procedure that is far 
from being practical. The need of drawing two entire dia-
grams in order to check the validity of a section converts this 
process in iterative and inoperative.

This text presents a new approach which implements 
buckling effects of the column [according to the European 
buckling curves] within the interaction diagram of a con-
crete-filled tube section. In this way, the approach is commit-
ted to facilitate the use of a manual and simplified method 
and to spread this way the use of composite tubular sections.

The proposed simplification shows a good agreement 
with experimental results, depending on geometric param-

Figure 13. Interaction diagrams for different values of χ.

Figure 14. Deviation percentage between real and simplified diagram 
area, depending on δ.
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Figure 15. Comparison between experimental results obtained by [8] and the calculated curves, obtained through the proposed approach (case of 
slender columns).

Figure 16. Comparison between experimental and calculated curves, obtained through the proposed approach (case of short columns).

TABLE 3
Results of tested specimens and the corresponding obtained values by using the proposed method. The comparison is done by using the available strength 
vector “d”.

Specimen L/D  r Experimental values [5] Obtained values Deviation

    N M c m d c m d d/d

(1) R20-27-e-1.0(+) 20 +1.00 585 5.8 0.62 0.22 0.65 0.65 0.22 0.68 1.04
(2)  20 +1.00 440 13.2 0.47 0.45 0.65 0.52 0.52 0.73 1.12
(3)  20 +1.00 222 22.2 0.23 0.79 0.82 0.31 0.92 0.97 1.18
(4) R20-27-e-0.5(+) 20 +0.50 627 6.3 0.67 0.22 0.70 0.65 0.21 0.68 0.97
(5)  20 +0.50 479 14.4 0.51 0.53 0.73 0.52 0.54 0.74 1.01
(6)  20 +0.50 265 26.5 0.29 0.95 0.99 0.29 0.95 0.99 1.00
(7) R20-27-e-0.0(+) 20 +0.00 671 6.7 0.71 0.23 0.74 0.66 0.20 0.68 0.92
(8)  20 +0.00 552 16.6 0.59 0.61 0.84 0.55 0.52 0.75 0.89
(9)  20 +0.00 307 30.7 0.32 1.09 1.13 0.28 1.00 1.03 0.91
(10) R20-27-e-0.33(−) 20 −0.33 711 7.1 0.75 0.24 0.78 0.67 0.20 0.69 0.88
(11)  20 −0.33 574 17.2 0.61 0.62 0.87 0.53 0.56 0.77 0.88
(12)  20 −0.33 328 32.8 0.35 1.17 1.22 0.28 1.02 1.18 0.96
(13) R20-27-e-0.66(−) 20 −0.66 738 7.4 0.79 0.26 0.83 0.66 0.21 0.69 0.83
(14)  20 −0.66 620 18.6 0.66 0.66 0.93 0.55 0.56 0.78 0.83
(15)  20 −0.66 325 32.5 0.35 1.17 1.22 0.31 1.03 1.07 0.87
(16) R20-27-e-1.00(−) 20 −1.00 823 8.2 0.88 0.27 0.92 0.67 0.21 0.70 0.76
(17)  20 −1.00 665 19.9 0.71 0.73 1.01 0.55 0.55 0.77 0.76
(18)  20 −1.00 336 33.6 0.36 1.19 1.24 0.29 1.08 1.11 0.89
(19) R10-27-e-1.0(+) 10 +1.00 606 18.2 0.64 0.64 0.90 0.61 0.60 0.85 0.94
(20)  10 +1.00 281 28.1 0.30 1.00 1.04 0.32 1.03 1.07 1.02
(21) R10-27-e-0.5(+) 10 +0.50 650 19.5 0.69 0.70 0.98 0.60 0.60 0.84 0.85
(22)  10 +0.50 328 32.8 0.36 1.17 1.22 0.30 1.04 1.08 0.88
(23) R10-27-e-0.0(+) 10 +0.00 695 20.9 0.73 0.76 1.05 0.61 0.62 0.86 0.81
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eters of the section and ratio between end moments of the 
column. For low steel contribution ratios, the accuracy of the 
simplification is surprising.

It is important to point out that one of most important 
conclusions of this text is the election of determining vari-
ables in the behavior of a composite section. This way, the 
importance of the value δ and μmax is shown through differ-
ent chapters of this text: all mechanical parameters can be 
simply referred to the steel contribution ratio and curiously, 
the maximum moment ratio is independent of the shape of 
the section, as explained in Fig. 7.

This fact is worth of further research about the impor-
tance of this parameter on the behavior of concrete-filled 
tubes.

It is important to take into account that in case of a high 
shear ratio acting on the column, further analysis should be 
done in addition to the proposed methodology [9].

The proposed method presents substantial advantages 
in the design optimization process of this type of sections. 
This way, the text pretends to improve a verifying process 
that, complemented by existing sophisticated software, could 
cope effectively the determination of particular structural el-
ements manually and at the same time, efficiently.
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